
  

 

 

 

Report 1: JISC Good APIs 
Management Report 

A review of good practice in the 
provision of machine interfaces and 

use of services 
Document details 

Author: Marieke Guy 

Date: April 2009 

Version: 0.8 (draft) 

Document Name: good_api_JISC_report_v0.8.doc 

Notes:  

 

Acknowledgements 

UKOLN is funded by the MLA: The Museums, Libraries and Archives Council, the Joint Information 
Systems Committee (JISC) of the Higher and Further Education Funding Councils, as well as by 
project funding from the JISC and the European Union.  UKOLN also receives support from the 
University of Bath where it is based.  

The project team are grateful to all those who gave up time to help with the report. Vital to this work 
were the people who filled in the questionnaire, those who responded the request for interviews 
and everyone else who made documentation available. 

This report was commissioned by JISC. 



 

JISC GOOD APIS REPORT  GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

Table of Contents 

1 EXECUTIVE SUMMARY..................................................................................................................1 

1.1 INTENDED TARGET AUDIENCE ......................................................................................................1 
1.2 DEFINITIONS................................................................................................................................1 
1.3 LICENCE......................................................................................................................................1 
1.4 RECOMMENDATIONS ....................................................................................................................1 

2 INTRODUCTION AND TERMS OF REFERENCE ..........................................................................2 

2.1 THE NATURE OF THIS REPORT......................................................................................................2 
2.2 QUOTATIONS USED IN THE REPORT ..............................................................................................2 
2.3 WHAT ARE APIS? ........................................................................................................................2 
2.4 AIMS AND OBJECTIVES OF THE PROJECT.......................................................................................2 

2.4.1 The Developer Perspective................................................................................................3 

3 METHODOLOGY .............................................................................................................................3 

3.1 LITERATURE REVIEW ...................................................................................................................3 
3.2 CONSULTATION MECHANISMS ......................................................................................................3 

3.2.1 Online Survey.....................................................................................................................3 
3.2.2 Interviews ...........................................................................................................................4 

3.3 EVENTS.......................................................................................................................................4 
3.3.1 CETIS Conference .............................................................................................................4 
3.3.2 JISC Developer Happiness Days (dev8d) .........................................................................4 

3.4 BLOG ..........................................................................................................................................5 
3.5 DISSEMINATION ...........................................................................................................................5 
3.6 IE DEMONSTRATOR .....................................................................................................................5 

4 ABOUT APIS....................................................................................................................................5 

4.1 DEFINITION..................................................................................................................................5 
4.2 TYPES OF APIS ...........................................................................................................................5 
4.3 PROCESSES IN THE USE OF APIS .................................................................................................6 

5 BACKGROUND TO API USE IN THE UK HE SECTOR.................................................................6 

5.1 PROVISION OF APIS.....................................................................................................................6 
5.2 CONSUMING APIS........................................................................................................................7 
5.3 OTHER SECTORS.........................................................................................................................9 

6 POTENTIAL BENEFITS OF PROVISION OF APIS........................................................................9 

6.1 REUSE ........................................................................................................................................9 
6.1.1 More Access ......................................................................................................................9 
6.1.2 Wider Audience..................................................................................................................9 
6.1.3 Extensibility ........................................................................................................................9 
6.1.4 Mashups...........................................................................................................................10 

6.2 UNEXPECTED USE .....................................................................................................................10 
6.3 DEVELOPING FOR NICHE MARKETS.............................................................................................10 
6.4 CODE IMPROVEMENT .................................................................................................................11 
6.5 CREATION OF CODE BASE..........................................................................................................11 
6.6 GRAVITATION TOWARDS STANDARDS..........................................................................................12 
6.7 ENCOURAGES DOCUMENTATION.................................................................................................12 
6.8 INNOVATION AND CONFIDENCE ...................................................................................................12 

7 CHALLENGES OF PROVISION OF APIS ....................................................................................12 

7.1 MAINTENANCE AND RESOURCE IMPLICATIONS.............................................................................13 
7.2 DEVELOPMENT FREEZE..............................................................................................................13 
7.3 FUNCTIONALITY LIMITATIONS......................................................................................................13 
7.4 BADLY WRITTEN APIS ...............................................................................................................14 
7.5 FRAGILITY .................................................................................................................................14 



 

JISC GOOD APIS REPORT  GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

7.6 SECURITY..................................................................................................................................15 
7.7 LICENCE ISSUES ........................................................................................................................15 
7.8 ABSTRACTION LEVEL .................................................................................................................15 
7.9 EXPECTATIONS..........................................................................................................................16 
7.10 GETTING PEOPLE TO USE IT.......................................................................................................16 
7.11 SKILL LEVEL NEEDED.................................................................................................................16 
7.12 FORMALITY................................................................................................................................16 

8 GOOD PRACTICE FOR PROVISION OF APIS ............................................................................16 

9 PROBLEMS WHEN USING THIRD-PARTY APIS........................................................................16 

9.1 POOR DOCUMENTATION.............................................................................................................16 
9.2 POOR TECHNOLOGY ..................................................................................................................17 
9.3 BADLY WRITTEN APIS ...............................................................................................................17 
9.4 LEGAL ISSUES ...........................................................................................................................17 

10 GOOD PRACTICE FOR CONSUMING APIS ............................................................................17 

11 SUGGESTIONS FOR FUTURE WORK.....................................................................................17 

11.1 SUPPORT DEVELOPERS .............................................................................................................17 
11.2 SUPPORT DEVELOPMENT OF APIS..............................................................................................17 
11.3 FUND MORE RESEARCH .............................................................................................................18 
11.4 MONITOR USAGE.......................................................................................................................18 
11.5 DISSEMINATE.............................................................................................................................18 
11.6 API SPECIFICATION/STANDARDS................................................................................................18 
11.7 LICENSING.................................................................................................................................19 
11.8 API REPOSITORY.......................................................................................................................19 
11.9 SUSTAINABILITY OF OUTPUTS OF PROJECT .................................................................................19 

12 CONCLUSIONS..........................................................................................................................19 

13 CASE STUDIES..........................................................................................................................20 

13.1 SPLASH, UNIVERSITY OF SUSSEX ...............................................................................................20 
13.2 THE OPEN SOURCE DEBATE: A GOOD API IS NOT ENOUGH ........................................................21 

14 APPENDIX A: GOOD APIS SURVEY QUESTIONS .................................................................22 

15 APPENDIX B: STATISTICS FROM THE GOOD APIS SURVEY .............................................24 

16 APPENDIX C: PEOPLE CONSULTED DURING THE STUDY.................................................24 

17 APPENDIX D: POTENTIAL TOPICS FOR FUTURE JISC REPORTS.....................................25 

17.1 CASE STUDIES ..........................................................................................................................25 
17.2 LISTS ........................................................................................................................................25 
17.3 GUIDES .....................................................................................................................................25 
17.4 SURVEYS ..................................................................................................................................26 
17.5 STATISTICAL DATA.....................................................................................................................26 
17.6 STANDARDS INFORMATION .........................................................................................................26 
17.7 DISCUSSION ..............................................................................................................................26 
17.8 TOOLKITS..................................................................................................................................26 
17.9 THE BIGGER PICTURE................................................................................................................26 

18 APPENDIX E: DEFINITIONS .....................................................................................................26 

19 AUTHOR CONTACT DETAILS..................................................................................................27 

20 REFERENCES............................................................................................................................28 



 

JISC GOOD APIS REPORT 1 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

JISC Good APIs Management Report 

A review of good practice in the provision of machine interfaces 
and use of services 

1 Executive Summary  

The JISC funds research and innovation programmes in the use of ICT in teaching, learning 
and in the building of knowledge and service development. Recent JISC programmes have 
supported development in the provision of machine interfaces and use of services and the JISC 
recognises that use and provision of APIs by developers working on JISC-funded projects is on 
the increase. 

The Good APIs project was initiated as a review of API activity in the Higher Education arena. 

This report is primarily a management report. It is an account of the Good APIs project 
methodology through two key consultation mechanisms: an online survey of and interviews with 
the HE developer community. Based upon the information gathered it offers a background to 
API use in the UK HE sector, the potential benefits of the provision of APIs and the challenges 
this provision can instigate. The report also reviews potential problems developers can face 
when using third-party APIs. 

Through the consultation carried out a set of best practice techniques for API creation and 
consumption were established, these are provided in a second report.  

Some conclusions have been tentatively drawn from the work carried out and a small set of 
recommendations made for JISC. The key recommendation is that to better support developer 
activities more work is need in this area (wider consultation etc.) To support these 
recommendations a larger number of suggestions for future work have been provided. A 
significant number of ideas for potential topics for future JISC reports have also been made 
available in the form of an appendix. 

1.1 Intended Target Audience 

This report is intended for use by the report commissioners, JISC. It will also have some 
relevance for managers by providing them with a better understanding of the benefits and 
challenges of API use in the Higher Education Sector. Some sections may be of interest to HE 
developers. 

1.2 Definitions 

Definitions of key terms as they are used in this report appear in Appendix E.  The meaning of 
the term API is better defined in the Introduction and the section About APIs. 

1.3 Licence 

This report is licensed under a Creative Commons Attribution-Non-Commercial 2.0 UK: England 
& Wales Licencei. 

1.4 Recommendations 

The following recommendations are made for the JISC. 

1. Future research into API creation and consumption should be funded. 

2. Consideration should be given to supporting the growth of the Higher Education 
development community through events and community engagement. 

3. There should be encouragement of greater provision of APIs by funded projects. 



 

JISC GOOD APIS REPORT 2 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

4. A knowledge-base of resources to aid development should be established. 

2 Introduction and Terms of Reference 

2.1 The Nature of this Report 

This report is based upon information obtained from a number of consultation mechanisms 
including an online survey. Many of the points made are drawn directly from the survey. While 
the use of a survey aids towards consensus it also offers one-off individual advice. Such advice 
may not have been discussed by the community and may not have been agreed upon by 
experts. It is hoped that future activity will allow this discussion and agreement to take place. 

2.2 Quotations used in the Report 

The quotations given in block quote style in this report are from the Good APIs survey. When 
conducting the survey it was indicated that all information would be annonymised and so all 
quotations are not attributed. 

2.3 What are APIs? 

Application programming interfaces (APIs) are a set of functions, procedures or classes that an 
operating system, library or service provides to support requests made by computer programsii. 
An API is a machine-to-machine interface rather than a user interface. It allows developers to 
access the functionality of other software modules through well-defined data structures and 
subroutine calls.  

 Web sites have in recent times evolved from static HTML pages to dynamic applications. Much 
of a sites activity involves cross linking information. The Web 2.0 premise of openness has 
sparked a trend among software companies and organisations of opening up their APIs for use 
by others.  

Someone once said "Application Interfaces are Social Constructs"; I find it 
helpful to keep this in mind. It's only an API while it's "my system" and "your 
system". 

2.4 Aims and Objectives of the Project 

The ‘Good APIs’ project aims to provide JISC and the sector with information and advice on the 
factors that encourage use of machine interfaces, based on existing practice and consensus 
within the development community. 

The main objectives of the project are defined as: 

 to define a set of criteria to use when selecting instances of the effective use of 
third party machine interfaces by the Higher Education (HE) community 

 to identify instances of the effective use of third party machine interfaces, and 
document them 

 by reference to the above, to draw general lessons with respect to good 
practice making services and data available via machine interfaces, in particular 
reviewing how developers within the HE sector are using Web APIs offered by 
both commercial sites such as Twitter, Facebook, Google, and non-commercial 
sites such as SherpaRoMEO. 

 to document the extent to which Web-based data and services managed within 
the UK HE community have learned the lessons and conform to the good 
practice so identified 



 

JISC GOOD APIS REPORT 3 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

 if Web-based data and services managed within the UK HE community have 
not learned the lessons and/or do not conform to the good practice so 
identified, to explain why, and to suggest ways to encourage improvements 
where appropriate 

The main proposed deliverables for the project have been defined as: 

 Documented good practices and lessons with respect to making data and 
services available via machine APIs 

 A report reviewing current practice in UK HE on these issues 

 A small set of practical recommendations which, if implemented, should result 
in a demonstrable improvement in the provision of services. 

2.4.1 The Developer Perspective 

When asked what they felt a report on good APIs could offer the development community 
developers provided a variety of responses:  

 Knowledge:  Many developers felt that currently very few people know what to 
do in this area. This void of knowledge is not in the area of development or 
programming skills but in the areas of management and direction. At this point 
in time there is no model or framework for API activity in the HE sector. People 
are often just 'chucking an API in there' with little regard for what fellow 
developers or users want or how users can use APIs as part of their learning 
experience.  

 Community:  Building an HE development community requires making contact 
with other people, finding out how they are thinking about using APIs, forming 
solid developer relationships and bringing content together. Some of this 
requires new ways of learning and engagement with external services. The 
report could aid in the establishment of this community and through its 
recommendations provide support for this community in the future. 

 Inspiration:  Many developers consider coding to be a highly creative activity 
and feel that the creation of useful APIs often needs an inspirational moment. 
For projects to interact APIs shouldn't be a special add on. Creativity requires 
space and support and JISC could again support activity here. 

3 Methodology 

3.1 Literature Review 

A vast amount of information about APIs and their use is available on the Web. Many of these 
resources have been bookmarked on the delicious social bookmarking service using the good-
apis-jisc tagiii. However for the purpose of this report although many of these resources have 
been consulted it has been felt necessary to keep the referral to them to a minimum. The 
reason is that the main body of this report has been drawn from the experiences and feedback 
of those working primarily in an HE environment. The Higher Education sector offers different 
challenges to developers than the commercial world. The literature review also involved 
monitoring of related Twitter posts and discussion lists.  

3.2 Consultation Mechanisms 

3.2.1 Online Survey 

The main body of information for this report was acquired through the conduct of an online 
survey. The survey was conducted in late January and hosted on the SurveyMonkeyiv site. 
SurveyMonkey is a private company that enables users to create their own Web-based surveys. 
It is well used in the HE/FE arena. The surveyv (questions listed in appendix) was advertised on 
a number of Academic developer lists and the link posted on several prominent blogs. In total 



 

JISC GOOD APIS REPORT 4 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

240 people filled in the survey. Statistical data on the spread of participants is given in Appendix 
B. 

3.2.2 Interviews  

After discussion among the team a number of potential key interviewees were identified. These 
people were interviewed by email or at events; a list is included as Appendix C. 

3.3 Events 

In parallel to the survey the Good APIs team attended a number of relevant events and solicited 
feedback at them. Establishment of a dialogue with the development community was agreed 
early on by the project team to be a necessary constituent if the project was to be a success. 
Informal interviews and discussions with developers provided a practical and cost-effective way 
of obtaining new and fresh comment. 

3.3.1 CETIS Conference 

The Good APIs project was represented at the recent CETIS Conference 2008vi. The 
conference was organised by JISC CETIS is a JISC Innovation Support Centre providing advice 
to the UK Higher and Post-16 Education sectors on educational technology and standards. Its 
theme was Technology for Learning, Teaching and the Institution. 

The project team facilitated a half-day session on Innovation in a World of Web APIs. In the first 
part of the session people were asked to talk about what they were currently working on. The 
second part of the session was spent looking at the future. This also involved exploring best 
practices for Web APIs. The set up was a quasi focus group with developers discussing a 
number of different issues in the publication and consumption of APIs. All the comments made 
by developers were documented and feedback from the session was added to the session 
wikivii. Further resources and handouts from the session, including a brief presentation on the 
Good APIs project, are available from the UKOLN Web siteviii.  

3.3.2 JISC Developer Happiness Days (dev8d) 

The Good APIs project team was also represented at the JISC Developer Happiness Days 
(dev8d)ix event at Birkbeck, University of London. 

The 5 day event co-ordinated by JISC was aimed at developers in UK Higher Education, 
however there were also places available for developers outside the UK and from outside HE. 
‘Technological tinkerers’ (people who would not classify themselves as developers but enjoy 
working with applications and code) were also invited to come along, as were a number of what 
were called ‘Uber Users’ (highly knowledgeable users). The pre-event day was designed 
specifically to develop skills and get people up to speed in a number of development languages. 
The rest of the week provided an opportunity for educational software developers to get together 
to pool ideas and take part in a developer decathlon: a two-day team coding session with prizes 
for the best code. 

While at dev8d the project team initiated a number of informal discussions with developers using 
questions from the survey. Many were keen to offer comment on where they want software 
development to go in the education world, and how they feel JISC could help take them there. 
Most were very ‘excited’ to have been given the opportunity to spend such a big amount of time 
‘just making stuff’. The event acknowledged JISC’s commitment to developers and there was a 
recognition of the current opportunity HE developers have to be heard. As Paul Walk explained 
on the event blog when asked what he was looking for as a Developer Decathlon judgex: 

“I’m looking to demonstrate that developers, especially when working directly 
with users, have much to offer the community. It’s about giving developers a 
voice – some developers have had to take a day’s leave to come here 
because there can be a lack of appreciation from managers of the value of 



 

JISC GOOD APIS REPORT 5 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

allowing their developers to get together with other developers to share 
ideas.” 

The event provided a number of useful resources including a series of five-minute interviews 
on the blogxi and an announcement Twitter channelxii. 

3.4 Blog 

The Good APIs blogxiii was created as a lightweight facility for reporting on activities. It has also 
been a medium in which to allow people to give feedback on current ‘thinking’. Different ideas 
with regard to best practice have been ‘put out’ in the community to allow comments.  

3.5 Dissemination 

It is anticipated that the good practice elements of this work will be shared with the HE 
developer community by chunking into a blog, either the writetoreply.org blogxiv or the Good 
APIs blog. Each section will be one post, and each post is open to comments from the public. 
This approach will probably take place over a specified timescale. It is also intended to use the 
report as material for a number of blog posts, online articles briefing papers and workshop 
events. 

3.6 IE Demonstrator 

The IE Demonstrator is a JISC-funded initiative to provide a focus for and showcase of 
development activities funded under the JISC Information Environment Programme. A 
knowledge-base of resources to aid development in this space is under development. Some 
outputs from the Good APIs report will be presented in the context of the IE Demonstrator for 
further comment, allowing ongoing development and review. 

4 About APIs 

4.1 Definition 

During the research carried out for this report it has become increasingly clear that what 
constitutes an API is ill defined and confusing. As all activity in the provision of machine 
interfaces to Web data and services is of interest a useful term that has arisen is ‘API-ness’, i.e. 
connected to APIs. The term is used in various blog posts and presentations available on the 
Web. It appears that there is a spectrum of activities that have elements of API-ness, from 
sharing of code libraries to use of Web and traditional APIs. This report attempts to be non 
discriminatory in the importance of various types of activity.  However the nature of the 
academic world in which we work in means that much of the information offered has tended to 
come from on the area of Web APIs. 

4.2 Types of APIs 

Although some have found it useful to make a distinction between traditional and Web type 
of API for this report some better distinctions might include: 

• projects which provide an API versus projects which are actually developing a Standard 
API (e.g. OpenDOAR offers an API, SWORD is a project defining one). 

• APIs which are about offering simple access to resources (e.g. RESTful) versus ones 
which are about exploiting some re-usable function (e.g. APIs for workflow systems) 

• APIs which are tied to programming languages versus those which are not (SOAP/ 
HTTP REST/XML RPC)  



 

JISC GOOD APIS REPORT 6 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

4.3 Processes in the Use of APIs 

Throughout the report it is necessary to refer to two different processes in the use of APIs. 
The first: provision of (or providing/publishing) refers to the release of an API by a developer 
for others to use. The second: consuming is the use of an external (or third party) API by a 
developer for the creation of an application, or other. 

Although both processes require skill it has been observed that constructing and provision of 
a useful API is more difficult technically than consuming one.  Although some developers 
may find themselves carrying out both processes it should also be acknowledged that they 
may be of interest to different audiences. It is likely that there will be more developers 
consuming APIs than providing them. Also the people primarily consuming APIs may have 
different skill sets than those constructing and publishing them. This report aims to offer 
advice for both types of developer and so has divided up much of its content using the two 
processes as separators. 

5 Background to API use in the UK HE Sector 

Educational software development, with or without the Web as a platform, continues to be a 
growing area. With the Web being the primary marketing tool for the University development 
teams are increasingly moving from back room research activities to front-line projects that 
are more visual and have greater ‘impact’. The current economic situation and the security of 
the public sector is likely to see well-qualified commercial developers moving into the HE 
arena. Development teams are growing and Web development teams especially are being 
recognised as a potentially lucrative workforce that can bring in money for institutions. Within 
JISC projects there is recognition that use of and provision of APIs is increasingly taking 
place. 

Currently the technical understanding required to get involved in development excludes most 
educationalists but simpler environments (like Yahoo pipesxv) are slowly making entry easier. 
Yahoo pipes provides a graphical user interface for building data mashups meaning potential 
developers can create applications without using code. 

These factors all mean that the release and consumption of APIs is a growing area in HE yet 
there are still few standards, little consistency and few recognised API best practice. 

5.1 Provision of APIs 

Of those 130 who answered the survey question on ‘provision of APIs for development work’ 
45% answered that they do currently publish APIs. Many of those surveyed answered that 
although they weren’t currently doing this they intend to do so in the very near future.  

Of those APIs being made available, many at this stage are purely for in-house/internal use. 
However, once trialled, a number of these will be released for public consumption. Some 
people surveyed revealed that they create APIs for non-work-related applications (both 
academic and non-academic). This extra curricular development may go alongside current 
work related development or be carried out by those not involved in development activities at 
work.  

What constitutes provision of an API is a matter for discussion). Some provided APIs by 
exposing data and functionality via REST or other means thus allowing third party tools to 
work with hosted versions of their code. Others offered lower level provision by allowing 
people to extend the functionality of their systems for their own hosting without needing to 
touch any code directly. Others felt that various data export features such as RSS and OAI 
could loosely be held under the banner of API release. Some who answered were in the 
process of launching infrastructures that provide access to resources; and interpretative data 
via an API.  

From these results it seems likely that API release will become an increasingly important 
area of work. 



 

JISC GOOD APIS REPORT 7 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

Some projects already offering APIs include: 

 OpenDOARxvi 

 OpenDOAR Prototype Protocol for Statistical Harvestingxvii 

 SHERPA/RoMEO Prototypexviii 

 WWWOPACxix 

 Museum of Londonxx 

 ArXivxxi 

 Oxford University Research Archive (ORA)xxii 

 GeoCrossWalkxxiii 

 Celtic coin index for Oxford Universityxxiv 

 PRODxxv 

 WebPAxxvi 

 Promethean Planetxxvii 

 Group Managerxxviii 

 The SWORD deposit APIxxix 

 Splashxxx 

 Joe Cuttingxxxi 

Note that the projects creating these APIs have all felt themselves to be related to HE in 
some way (i.e. funded by JISC, based in a University or other). 

There was also mention of APIs being used for GRID work, repository work, VREs including 
portal interfaces, preservation storage repositories, maps and map based solutions, 
corporate information (e.g. staff, student, module and programme information). Description 
of API sizes ranged from a few calls to high tens of classes and high hundreds of methods. 

At present the biggest list of available Web APIs is on Programmable Webxxxii. Although 
there is a government category there is currently not an education category. Research has 
not found any other comprehensive Web API Directory for education. 

5.2 Consuming APIs 

The consumption of external APIs in HE is understandably more common place than their 
provision. HE developers are happy to use APIs from a variety of sources and systems, both 
commercial and non-commercial, including search tools, Customer relationship management 
(CRM), data manipulation systems, bookmarking, social networks etc.  

The third Party Web APIs reported were:

  Affiliate Window 

 Akismet 

 • Amazon 

 • Amazon  

 • Asdel 

 • Atompub 

 • Basecamp 

 • Basecamp  

 • BBC URLs 

 • Bodington 

 • caldav 

 • Captcha 

 • Confluence 

 • Delicious  

 • Django 

 • Drupal 

 • echo3  

 • ePrints 



 

JISC GOOD APIS REPORT 8 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

 • ETD's via OAI-PMH 

 • Eu4ALL 

 • Ex Libris 

 • Ex Libris 

 • Facebook  

 • Fedora-commons 

 • Flickr  

 • Google Analytics 

 • Google Calendar 

 • Google Checkout 

 • Google docs 

 • Google Maps 

 • Google translation 
services 

 • GoogleMaps  

 • Harvest Road Hive 
repository  

 • Heritrix Web crawler 

 • Hibernate 

 • Hungrybot 

 • identi.ca  

 • Java 

 • JQTI 

 • jQuery 

 • last.fm 

 • Librarything 

 • link2collab  

 • MCQFM 

 • Metalib 

 • Moodle 

 • Nestoria  

 • Netvibes 

 • New York Times 

 • OAI-PMH 

 • OCLC WorldCat  

 • OpenCalais 

 • OpenDOAR 

 • Oracle 

 • OSCELOT 

 • Paypal 

 • Peer Pigeon 

 • prefuse.org 

 • Reuters 

 • Ribbit 

 • ROAR 

 • Scientia 

 • Seam 

 • SHERPA/RoMEO 

 • Shibboleth 

 • Sitestat 

 • SITS  

 • Skype 

 • sPlus 

 • TaskStream  

 • tinyurl.com 

 • Twitter 

 • Twitter search  

 • uriplay 

 • WebCT's PowerLinks 

 • X-Server 

 • Yahoo Search Boss 

 • Yahoo Term 
extraction service 

 • Yahoo widgets 

 • Youtube 

 Zooom

Note that these APIs are from a variety of types of organisation: commercial, non-commercial, 
public sector and so on.  

People had also used many Java-based APIs, including "specialised" Java APIs (e.g. Quartz, 
CNRI Handle). Others explained that they had used APIs for languages and libraries such as 
PHP, Java, Javascript, Jquery, Mootools, Prototype and others.  



 

JISC GOOD APIS REPORT 9 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

5.3 Other Sectors 

An in-depth look at what is happening in the other sectors is not part of the remit of this report 
but obviously many commercial organisations are releasing and using APIs. The extensive 
number of API directories which includes the Programmable Web, Webmashupxxxiii. And 
WebAPI directoryxxxiv demonstrates this. 

In the public sector library developers have led the way somewhat with the sharing of APIs, 
possibly because of the vast quantity of data sets that are accessible to them. Roy Tenant 
collected a list of useful APIs for library services on his TechEssense.info blogxxxv. This list was 
added to during the Mashed Libraryxxxvi event held at Birbeck College in November 2008. 

Another set of developers in the public sector that are starting to do more in this area are 
museum developers. Although there are currently only a small number of APIs available 
discussion on the Museums and Computers Groupxxxvii indicates that this is about to changexxxviii 
with big players like the Brooklyn Museum and the Powerhouse Museum releasing APIs and the 
UK Natural History Museum about to embark on iterative testing. One of the biggest challenges 
for these groups is working on standards for related data. This is an area which could be the 
basis for further investigation. 

6 Potential Benefits of Provision of APIs 

The release of an API, or series of APIs, allows smoother data transfer and has enormous 
potential benefits for an organisation or project. 

They key ones identified through the survey were: 

6.1 Reuse 

6.1.1 More Access 

The concept of open data is far from new but has in recent times become increasingly 
associated with releasing of APIs. By making APIs available an organisation or project makes it 
easier for people or programmes to access and use their data and services. This means that 
API providers benefit from their data and functions being used more widely than those who keep 
their data closed.  

Release of APIs touches upon areas of data portability. DataPortability xxxix is the idea that users 
should be able to move, share, and control their personal data. 

6.1.2 Wider Audience 

Provision of APIs enables a provider’s core application to reach a much wider audience, 
whether they consume the API directly or via third-party applications using the API.  A provider 
might see this as a potential way to gain ‘greater market share’. This relationship with a wider 
world than ones institution or organisation opens up huge amount of possibilities. It creates the 
potential to integrate and connect many different applications and data sets.  An example might 
be the reuse of ‘available flats to rent’ data by the University of Bath’s Flat Out Project. By 
release of an API the data providers (the letting agency) were allowing their data to reach a 
much wider audience that they may have initially overlooked, in this case the University of Bath 
student audience. 

6.1.3 Extensibility 

The concept of reuse runs both ways, releasing APIs allows a greater and more adaptive use to 
be made of services. Other developers are able to re-use these resources by developing their 
own custom applications with the released data. This in turn adds value to the original work. 
This functionality and data is quite often material the original developers could not generate 
themselves ultimately releasing an API has the potential to allow development of additional user 
interfaces using the API which may be better or more useful than the default interface. 



 

JISC GOOD APIS REPORT 10 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

The Web is a universal platform for building networked applications. APIs 
allow for rapid development of such applications. Creating an API for 
external consumption can enable a third party (with time, money and a 
certain inclination) to extend the capabilities of a service. APIs foster 
innovation because they enable people to build upon the available service 
rather than clone existing functionality.  

6.1.4 Mashups 

An API in combination with other APIs allows "remixing" of services from different sources to 
create an aggregate which may contain additional functionality that otherwise wouldn't be 
feasible. Mashups are defined by Wikipedia as “a Web application that combines data from 
more than one source into a single integrated tool. The term Mashup implies easy, fast 
integration, frequently done by access to open APIs and data sources to produce results that 
were not the original goal of the data owners.” Realising ones APIs opens up the possibility of 
others using it to produce mash-ups. Mashups also open up the field by allowing people with a 
reasonable level of technical skill but as competent as developers to use APIs to construct new 
Web-based applications. They can make complex things like visualisations accessible to the 
people to use. As one developer commented “In the best API mash-ups, the benefits of the 
combined application are greater than the sum of the constituent APIs.” 

APIs are the door of extension and integration with others services. 
Providing APIs to your application make it a "service" and an add value for 
others applications. The benefits are reciprocal because becoming useful to 
others services/application you increase the users of your own app.  

6.2 Unexpected Use 

As explained in the previous point, exposure of APIs spreads your content and brand to areas 
you wouldn't normally reach and encourages these people to make use of your data and 
services. This reuse may often be in ways you expected, but may also be in novel ways you 
hadn't anticipated. Opening up your data and services offers people the flexibility that 
encourages them to build interesting things on top of our platform. People may be able to do 
more interesting and innovative things with your data and service which you hadn’t thought of or 
don’t have the resources to do. As Rufus Pollack famously said “The coolest thing to do with 
your data will be thought of by someone else”. History has often shown this to be the case. 
Someone with a different perspective and role from you may well invent a more effective use of 
your service. 

Releasing APIs extends the usefulness of the application enabling more possibilities for use of 
your data or service beyond the Web interface developers have developed for it for. The Web 
means that users can be anyone and use can be anyway. 

6.3 Developing for Niche Markets 

Releasing APIs allows developers elsewhere in the organisation to develop functionality to meet 
specific local needs, which can't be justified (in development or support costs) on an 
organisation-wide level. They also allow users to prototype and explore new requirements, 
which can later be rolled back into the main product. Releasing APIs can also assist archival 
and preservation functions or support particularly rare or proprietary functions which are 
normally not encouraged for general use. It could also lead to future collaborations in niche 
areas. 



 

JISC GOOD APIS REPORT 11 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

6.4 Code Improvement 

Releasing APIs you’ve effectively given yourself a dev team larger than you 
could ever hope to afford. 

Along with the reuse of your data and services provision of APIs also opens up the opportunity 
for improvement of your actual code by others. Openness of systems allows other developers to 
build on your existing business logic. You are not only enlarging your user base but also your 
developer base. 

Different developers have different ideas on how things can be done. An API allows for flexible 
presentation and analysis of content by a much greater number of people. The results may be 
fed back into the service development of the source organisation, thus benefiting the end-users 
as well as the service providers. They allow software reusability, particularly if software is 
properly modularised. They allow separation of interface (which will probably become obsolete 
pretty quickly) and data and underlying algorithms (which hopefully will be longer lasting). 

This is an activity inline with the open source ideology, described by Yochai Benkler as 
“commons based peer production”. Open source code is code “made collaboratively and shared 
publicly by a community of equals”. For the founder of the open source movement, Eric 
Raymond, the virtue of Open Source is its efficiency. It is well documented that Open Source 
can sometimes create better products faster than the old closed source model.   

Open sourcing the code allows those wishing to modify the core application to do so without 
overcomplicating the API. An example of this approach is Apache HTTP which handles the 
essential functions of serving Web pages, whilst an API allows extension of the server through 
an efficient API. This allows the core to be optimised for the features all users need, and 
optionally functionality to be included in extensions. 

Releasing APIs encourages agile development. The resultant wider use of released APIs can 
often lead to more suggestions for improvements, bug notification and suggestions for patches. 
The theory is that the more users an API has, the less buggy it will be. 

A good API is closer to the coal face than much technical documentation, 
but also insulates upstream developers from downstream technical changes. 
This allows separate testing and development and also reuse. 

Some might argue that releasing APIs reduces the workload of individual programmers. Others 
that this is not necessarily the case but what it does do is provide developers with an 
environment in which they can ‘bounce ideas around’ with fellow developers. Others might also 
argue that by building for public viewing APIs encourage good architecture, if that's not already 
in place, by separating data and functionality from presentation. 

All in all releasing APIs lowers the barrier to the developer community contributing to your 
project’s development work. 

6.5 Creation of Code Base 

As well as allowing code to be more easily improved upon releasing of APIs has led to the 
informal creation of a ‘code base’ where people can easily reuse the work of others. The reuse 
of existing code encourages modularity and allows the automation of repetitive and time 
consuming tasks. APIs allow developers to avoid reinventing the wheel by providing 
standardised access to a range of functionality. API's can incorporate lots of detailed 
understanding to commonly used but problematic areas. Tricky tasks can be made easier and 
done correctly and bug free by using the API e.g. Hibernatexl. This encapsulation of common, 
often repeated or low-level code helps improve developer productivity and ultimately promotes 
progress in the industry. 



 

JISC GOOD APIS REPORT 12 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

One example of API's incorporating domain knowledge that it is often unnecessary to replicate 
is the Class GregorianCalendarxli, an API built into the core Java language. This subclass of 
Calendar is a hybrid calendar that supports both the Julian and Gregorian calendar systems and 
provides the standard calendar system used by most of the world. To recreate this calendar 
implementation would be very complicated and require a great deal of research. For example “is 
2000 a leap year?”, “does 2009 have leap second etc.?”  

Having an effective code base has many knock on effects. It cuts down on bugs because you’re 
able to use previously developed, well tested code. Feedback helps detect errors and mistaken 
assumptions. It reduces data-synchronisation issues, and can also reduce the development time 
on future projects. It also allows people to extend systems quickly and easily without having to 
understand the full architecture of a system. This lowers the barriers to entry for those wishing to 
extend (but not modify) a system. 

Code bases result in the creation of a collection of ‘templates for good practice’. 

6.6 Gravitation towards Standards 

The openness of APIs allows developers to work in a more shared environment where good 
work practices can be established. By sharing their work developers are encouraged to keep 
their code ‘tidy’. This encouragement of best practice will hopefully, in time, encourage 
gravitation towards informal standards (possibly for data, and hopefully for APIs call/response 
formats themselves). It seems that the more people who expose their data in a structured form 
(ideally via some sort of API) the more impetus there will be for people to do so in the same 
way, even if this is "lowest common denominator". 

6.7 Encourages Documentation 

The release of an API forces good documentation of, at the very least the API, which would 
hopefully lead to good documentation of the underlying code too. 

6.8 Innovation and Confidence 

APIs promote innovation and encourage confidence. Developers who get to see their work used 
and built upon are likely to be more proactive than those who don’t. Many of the users and 
developers who interact with your API will be passionate about your services, with ideas on how 
to extend and improve it, and the know-how to implement those great ideas. More applications 
related to your Web site means more ways for users to interact with it, which means more 
chance of a “killer feature” written by a user of your service that ends up driving thousands of 
new users to your site, any one of which can be a developer that continues the cycle. It’s an 
“upward spiral.” 

Many content based, document standards are a dead end. APIs permit 
innovation on the part of those consuming and using them. 

APIs allows innovation among developers and users leading to competition and improvements. 
They inspire and build confidence. 

7 Challenges of Provision of APIs 

Although the benefits of providingAPIs are great there are naturally many challenges for the 
user and developer.  

They key ones identified through the survey were: 



 

JISC GOOD APIS REPORT 13 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

7.1 Maintenance and Resource Implications 

Provision of APIs obviously has a development overhead. Released software always has a 
support burden and time will be required for ongoing maintenance and additional 
documentation. If APIs are not maintained it is quite possible that they will become obsolete.   

The maintenance issue has particular consequence when you consider APIs developed with 
JISC funding. The sustainability of resources created becomes difficult when development 
teams move on to their next project. Many institutions may well find that they end up with 
multiple systems to manage. Some developers have commented that they are reluctant to 
release APIs because they do not want to be responsible for them when they break. APIs mean 
exposure and some developers may be reluctant to open up their code in this way. 

Often providing enough forms of APIs to satisfy most developer needs requires multiple 
implementations using numerous languages. This results in an even bigger developer overhead 
and a need for an effective infrastructure and community to provide the technical support, 
tutorials and documentation needed. 

The resource issue also relates to the amount of work and time required to evolve a good API 
initially, if this hasn’t been written into the initial project plan than it can be impossible to justify 
given the time available in a typical project. Time is not just required for the actual coding but 
needs to be taken to understand the use case, how it related to surrounding use cases, and how 
future use cases might affect the domain and for good documentation. 

Supporting developers needs a different skill-set to other kinds of support. An increased user 
base means thinking about upgrade path and while a private API is simple to change, once its 
'out-there' you can annoy a lot of people very quickly with the smallest change. In his keynote on 
designing APIsxlii Google’s Joshua Bloch said “Public APIs are forever - one chance to get it 
right.”  

7.2 Development Freeze 

To be released and made usable by third-party software APIs must be frozen. This brings to an 
end most development activity. Thus the release of APIs can be a constraint for the 
development team. 

Once published, any further developments need to be backwards compatible. It can be virtually 
impossible to manage forward/backward compatibility across a whole range of services. Version 
control is critical and managing the transition from beta/development API to production without 
breaking interfaces is paramount. Developers may find that change their data in a way which is 
fine for their own needs but which breaks third party use.  

It could be argued that agile development does not concern itself with re-use, preferring to just 
develop only what is strictly necessary for the job in hand.  

7.3 Functionality Limitations 

Data or resource-centric APIs offer only partial access to data and it is likely that you will not be 
able provide all the functionality offered to those accessing your data more directly. It is difficult 
to know beforehand which functionality to prioritise which may mean that you do not always 
have the best set of features. It is likely that developers will struggle to decide what to expose 
and may only be able to provide a limited subset of their data because they are bound by an 
organisation’s copyright or usage guidelines. This may be amplified by the ‘unknown’ factor of 
APIs. Most developers cannot predict who will be likely to use their API and on what kinds of 
things they will want to do with it. The unpredictability of APIs may also mean that your API 
takes off in an unexpected way. As is with the case with many products of the Web 2.0 era of 
the Web is often unclear how APIs and their related applications will be used. Many would argue 
that this field offers so much potential and excitement for developers because at this moment in 
time all possibilities still exist. When a Web API is released it is likely that their author will not 
know how other developers will choose to use it, if at all. This unpredictability offers great 
potential but also a number of issues for developers and consumers alike. 



 

JISC GOOD APIS REPORT 14 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

After writing the same type of service for the same audience several times, 
you get a better idea of what to include. 

When maintaining software, whether or not APIs are internal or external, you have to use 
existing functions. 

In response to the limitation of functions developers may find that they create APIs that are too 
open and unregulated.  It is difficult to strike a balance between functionality and ease of 
learning and use. There are too many APIs with too narrow a theme or geographical focus and 
many that are too wide. The compromise between full-function specialisation and generality is 
tricky to get right.  

A formal subsystem boundary is established, forcing developers to decide which side of that 
boundary any given functionality should reside.  The decision isn't always correct.    Developers 
are discouraged from arbitrarily mutating the interface, reducing innovation. 

In defining an API to be generic, it is sometimes difficult to serve the complexity required for 
some custom applications. If accessing resources across a network, speed limitations are 
obviously present. Also, if accessing resources/data held by a 3rd party, processing/response 
time may be unacceptable for certain functions due to the way the data is organised. A 3rd party 
developer, or consumer of a resource will often lack the access/ability to truly have their 
requirements serviced. 

7.4 Badly Written APIs 

Consumers may find that badly conceived and coded APIs are more of a hindrance than a help 
and a rod for their developers back. As one developer put it “a badly thought out API can end up 
being a straight-jacket.” An inflexible API offers little to consumers. 

One area that can often cause problems is accessibility. It can be problematic as some features 
of accessibility will be inherent in the API functionality whilst others are to do with the context of 
its use.  

Non- Web based APIs continue to be mainly written by developers and often language 
dependant, which therefore requires developers to be familiar with that language.  Once an 
interface is being used, it is very difficult to change and retire resulting in bloated code.  API's 
can sometimes be too far abstracted. This may result in an inefficient implementation to achieve 
a developer’s desired goal. 

Using an API can be slower than doing equivalent operations directly such as through a 
database system.  For finding complex sets of data, some APIs make it very difficult to find the 
information you are seeking or require slow techniques such as retrieving a set of data, iterating 
over it and retrieving multiple other pieces of data based on the results of an initial set.    These 
may be limitations of the way the API is designed and exposed, but many APIs seem to be 
unwieldy and very slow for more complex operations. 

They might not fully meet the needs of the development. They might also not have appropriate 
triggers and flags for application development, i.e. a room booking system may deliver 
information about when a booking is made but not when a booking is altered. 

Also it's essential to provide good documentation and feedback mechanisms for API users to 
get max benefits. APIs without adequate documentation are described as “being harder to use 
than starting from scratch”.  Documentation is sometimes limited and written in a non-accessible 
style the support infrastructure is often ineffective or totally absent and feedback mechanisms, 
and opportunities to influence improvements to the API are likewise limited. 

7.5 Fragility 

The longer your pipe the more likely it is to break somewhere 



 

JISC GOOD APIS REPORT 15 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

When designing an API a developer might ask “how long does it need to last?” Some might 
answer that APIs are transient and best practice is to treat them and all mashups as not being 
too permanent.  

It is almost as if it is becoming so easy to create things that they no longer 
have as much value. The theory is that you can always re-build it from 
scratch in 5 minutes 

This could be regarded as a view held by only a few people working only with some Web APIs. 
It is likely it would not be recognised by developers building more critical systems. 

7.6 Security 

You need to think about trust between parties.  Do you trust external users 
to use your data sensibly at their end, let alone (over)write the data on your 
systems? 

With open, public-facing APIs where data can be written back to the service there is always a 
risk that a careless, trivial or malicious API usage or simply user error may bombard the host 
server. Also mashups may expose more details about your data than you should be releasing to 
the world. 

Provision of APIs requires you to think about scalability and security more than perhaps you 
otherwise would. Care must be taken over the exposure of sensitive data and security where the 
API enables modification or posting to the system. APIs allow users to misuse or abuse your 
systems in ways which aren't possible via a purely user interface based approach. 

An open SPARQL endpoint, if not properly handled, can be abused and be 
easy prey to innocent queries that unfortunately bring the whole system to a 
standstill. The current tactic on powerful (and therefore vulnerable) services 
such as these is to allow access to a subset, access to a set of canned 
queries that have been vetted or heavily pre-calculated and cached. 

Providing security through an API may be an additional complication if some of the data is 
sensitive or private in some way.  

7.7 Licence Issues 

When providing an API you must manage licence provision very carefully to avoid legal 
liabilities, both direct and consequential. Clear licensing policies are always needed. 

Saying 'not my fault' is no good at all if you have to tie up a team of lawyers 
to prove that point across borders. 

Release of an API requires thought about provenance, allowed reuse, authentication, secure 
transport and data privacy issues at the very least. Some developers might be inclined to use an 
already established licence like Creative Commons, or an open source alternative. 

7.8 Abstraction Level 

Deciding upon appropriate level of abstraction, especially for Web APIs, can be tricky. A good 
API should be an abstraction of the useful operations of the software and it takes a number of 
iterations of the same kind of operations before that commonality can be identified and usefully 
extracted into an API. Many APIs are generally developed around a particular problem space so 



 

JISC GOOD APIS REPORT 16 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

sometimes it is difficult to get the generic level for an API "just right”. Often just one of many 
possible object models is implemented which may reduce uptake due to disagreement, 
complexity or not "just right" in its generic-ness  Provision of an API requires taking time to 
document and provide examples. In some senses you might argue that a program abstraction 
should be an API in its own right.  There is a skill in making an API generic enough to be 
accessible without being too generic. 

7.9 Expectations 

When writing and providing APIs it’s important to provide a clear vision of what can be created 
to your users and team. People see more traditional standards based documents and 
functionality as what is presented to them, however if these can be transformed, adapted and 
integrated (mashed up) in new ways then completely new products and services emerge. This 
type of development is still alien to many managers and many purchasers. They may think they 
get what they pay for and then pay for something else later, without realising they could have 
combined their original technology with others via APIs to have something more customised to 
their need. 

7.10 Getting People to Use it 

After releasing an API it can be difficult to get other developers to use it. This may be because 
people have yet to find out about it and some promotion work is required. You may find that only 
a limited numbers of developers may want to use it, either because you are not the leading 
provider in an area or because your datasets/functionality are too "niche". There is also a fear of 
the unknown (especially with production implementations). Developers might lack the 
imagination to decide upon ways to use it or be weary of the licensing implications: “I could use 
it but am I allowed?”  

Developers may find that they need to evangelise their API and to do a great deal of advocacy.  

7.11 Skill Level Needed 

One of the main drawbacks with providing APIs is the skill level required to understand and 
implement an interface. Although APIs aim to remove complexity, simplifying the problem to a 
defined set of methods and variables, a degree of technical knowledge will generally be 
assumed and required in order to exploit them. APIs must also be maintained as an additional 
component to a service - pricing strategies and licensing are difficult to implement. 

7.12 Formality 

Provision of APIs forces you to think before you act: you need to make good architectural and 
design choices and document well. This enforces a formality that may not be appropriate. For 
example a Service Level Agreements may be required. 

8 Good Practice for Provision of APIs 

The good practice recommendations have been provided in the separate good practice report.  

9 Problems when using Third-Party APIs 

An increasing number of HE developers are using third-party APIs and there is much to be 
learnt form the mistakes these APIs make.  

9.1 Poor Documentation 

The main problem developers had encountered when consuming external APIs related to 
documentation. Many reported bad, out of date or non-existent documentation with a lack of 
source code examples and no case studies. Using such APIs meant a steep learning curve. 



 

JISC GOOD APIS REPORT 17 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

The lack of documentation was sometimes mitigated by helpful user comments (when not out of 
date). 

Many developers reported difficulties in getting to know new large APIs. These problems were 
not necessarily related to how individual operations work but what the range of operations is 
and whether the API was suitable for their needs. Documentation could have a roll to play here. 

Examples of services with bad documentation include the EPrints REST interface. 

9.2 Poor Technology 

Other issues related to technology problems such as unreliable server, transient connectivity, 
concerns about security and inability to access data when offline. 

9.3 Badly Written APIs 

Other issues relating more specifically to the actual APIs include poor coding practices such as 
bad code structure, inconsistent object modelling caused confusion. Many reported APIs 
serving up bad data based on incorrect implementation of standards, namespace problems and 
inconsistent schemas requiring code to be re-written for each API. Others had stability issues or 
became very large over time. Issues like unclear rate limits, accessibility and compatibility 
issues that prevented developers from using them. 

9.4 Legal Issues 

What would happen if you started scraping the Disney site? Would they be 
running after you/your institution with the lawyers if they caught you? 

Sometimes third-party API publishers are unclear about what would happen if you used their 
data in a certain way. 

10 Good Practice for Consuming APIs 

The good practice recommendations have been provided in the separate good practice report.  

11 Suggestions for Future Work 

11.1 Support Developers 

Draw upon the skills and expertise of software developers in the first instance.  Get them to try 
out and critique services.  Disseminate best practice and let developers do the rest. Developers 
need more events like dev8d, more opportunities to meet up and more time and space to 
innovate. 

We’re finally getting to a point where the barrier to entry for developers to make 
significant progress or impact has lowered due to new techniques to retrieve, 
re-use and mash-up data. 

11.2 Support Development of APIs 

New JISC Web projects should be strongly encouraged to create open APIs. Tender documents 
for upcoming calls should suggest that projects build the creation of APIs into bids and project 
plans. Projects could be offered funding specifically to create APIs because more and more 
projects are interlinking software from JISC projects. They could fund the development of API's 
and interface to cover common problems. 



 

JISC GOOD APIS REPORT 18 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

 A good API is the programmers equivalent of open access.  

Usability testing and the creation of proper documentation should be encouraged. 

Higher education currently doesn't have many resources to make use of 
something that is difficult or that isn't critical. Funding problems make many 
non-essential service difficult to implement.  The other problem is that certain 
departments in the educational system have limited technical resources.  

For the CETIS conference Tony Hirst showcased a presentationxliii on JISC sponsored APIs he 
would be happy to experiment with in the future. He was after hackable and RESTful URLs, 
OpenSearch search data with clear licensing policies. He asked for course details, course 
syllabus/curriculum information, academics names, course reading lists and much more. For HE 
developers to innovate there needs to be open data and available APIs to ‘play’ with. 

I like the term playground, the play bit is important. 

11.3 Fund more Research 

Appendix D at the end of this report provides some ideas for potential topics for future JISC 
reports. API use on the Web is still an evolving area and the learning and teaching potential is 
still unclear. It may possible to learn lessons from the rest of the world but further research could 
play a big part in HE developer’s success. 

11.4 Monitor Usage 

JISC has a role to play in monitoring the usage of APIs: number of accesses, ratings and 
comments etc.   

11.5 Disseminate 

JISC could support the development of APIs by demystifying their use, to help non-technical 
managers and in particular project managers to understand what they are, how they can be 
used, and implications for their decision-making. 

They could provide good quality information on related topics (see appendix D). 

11.6 API Specification/Standards 

The simpler the spec, the more likely it is to be adopted.  If you can find 
something simple, but useful, then you might be on to something.  If it's 
powerful and extensible too, then the skies the limit. 

Standards is a tricky area and developers are divided on the role they would like JISC to take. 
Many recognise that there is a subtle difference between ‘best practice’ and ‘reality’ and JISC 
should be careful not to get drawn into enforcing standards. Some feel that JISC should 
concentrate on protocols while others feel that JISC have a role in developing standards. 

If an API spec is to be 'recommended' to HE, then a validator or demonstration 
client/server would be a real bonus.  Something you can test against to make 
sure your end is performing as it should.  e.g. the HTML/CSS/RSS validators on 
W3C, or Amazon's mock service. 



 

JISC GOOD APIS REPORT 19 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

11.7 Licensing 

JISC could potentially play a role in addressing the licensing issues of metadata API services 
from large institutions such as the British Library, and the Library of Congress.  

While the local government authority records are openly accessible and, as they 
are federally funded, are nominatively public domain, they retain copyright 
outside of the US - this is a truly untenable situation for a global and border-less 
system such as the internet.  While we, as individual institutions, may be 
ignored by these places, the JISC may be in a better position to agree on our 
behalf, or to negotiate for a reduction in licensing restrictions. 

11.8 API Repository 

The possible provision of an HE API repository is an idea that has been met with mixed 
response. Although there is currently no easy way to find out what APIs HE projects are 
providing something specifically for HE might not be embraced by the community. There is great 
potential for a registry which could gather API services in one place and facilitate their discovery 
and use, and perhaps the uptake of best practice but this is possibly something that needs to be 
developer led. 

Discussion on the topic suggests that a successful approach should take the form of an 
evaluated list reviewed by developers working in HE. There should be summary description of 
capabilities and example uses. One possibility is the creation of a ‘space’ on Programmableweb 
either by submitting examples to programmeweb.com (with a tag of our choosing) or by 
contacting Programmableweb and asking for an education category. 

The IE Demonstrator mentioned previously is a potential showcase for development activities. 

11.9 Sustainability of Outputs of Project 

The good practice outputs from this project have potential to be used in a future work. UKOLN 
are looking to build on this work in forthcoming project plans. 

12 Conclusions 

The research carried out has collated so many opinions, suggestions and speculations that it is 
difficult to encapsulate this in a brief conclusion. What is clear is that API creation and use is still 
an emerging area of work for Higher Education and that there are many questions that still need 
answering. Some of these research areas are listed in Appendix D: Potential Topics for Future 
JISC reports. 

The question “What makes a good API?” remains unanswered. Different contexts have different 
characteristics, and application architectures used in one context may differ from those used in 
other contexts. This may mean that defining what makes an API "good" is a difficult and possibly 
impossible task. What may be "good" in one context isn't necessarily good in another.  

However, that said, this report does offer many ways for developers to move closer towards the 
goal of creating such a thing as a ‘good API’. These best practice techniques will hopefully 
become more concrete as the developer community provides their own input. 

APIs usually reflect, like any designed artefact, a bunch of comprises, i.e. 
functionality vs security, simplicity vs flexibility.  To work in a particular domain 
these compromises have to be right. 



 

JISC GOOD APIS REPORT 20 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

13 Case Studies 

13.1 Splash, University of Sussex 

As part of the JISC E-learning programme, the University of Sussex received funding to develop 
a system that could help provide a more personalised student learning experience by 
developing a user-owned, Web-based portal/mashup service that could be integrated with 
institutionally owned systems and gather content from external sources such as Flickr, 
YouTube, Facebook, and so on. 

We ran evaluation tests on various 3rd-party software solutions, most notably Elgg, Mahara and 
Wordpress. Although these systems were found to be quite good aggregators, they did not fully 
meet with our requirements. Our functional requirements included the need for: profile page 
creation; an iGoogle-type dashboard; blog facility, messaging facility, group and friend creation, 
and the ability to customise templates and add metadata. We also wanted content to be created 
and aggregated from both internal and external sources. We decided to build in-house using the 
PHP-based Zendxliv Framework.  This gave us a well documented, consistent and stable library 
of components for us to build SPLASHxlv on and allow other developers to easily extend it. 

The resulting project SPLASH (Student Personal Learning and Social Homepages) is now 
being used at Sussex and is about to be released as open source. The system is also available 
to, and being used by staff at Sussex. 

We had some initial issues using the Zend Framework on Mac OSX Servers. This was due to 
slow file traversal on the Macs when compared to other platforms such as Linux or Windows. 
This was worked around by using absolute paths and APC, an opt-code caching engine. 

Some of the Zend Framework libraries we used to interact with external service APIs became 
out of sync with the services API release. An example of this was Last.fm. Whereas this did not 
break SPLASH functionality, it did not allow us to take full advantage of the Last.fm API. We 
ended up interacting with the API directly and not through a wrapper component. 

There is quite a learning curve in implementing various APIs. Some are better documented than 
others, some are more complicated than others. There is also the issue of keeping on top of 
changes to APIs – with or without using a component library to interact with that API. There is 
always the additional concern that if you don’t keep up with an API update then it will break 
application functionality. Generally, the ‘bigger names’ that produce APIs ensure that they are 
always backward compatible. 

We have developed a system that is extensible and very much open for further development. 
For the dashboard and profile pages we have created a closed API for SPLASH for the 
development of widgets.  It is closed in the sense that it is not public, but developers at Sussex 
can get access to the API and implement widgets, which in turn can use APIs from both internal 
and external sources. Once we release as open source this will be of benefit to any other 
installation of SPLASH, as then widgets from one SPLASH installation could be used on 
another, promoting a diverse range of widgets. 

From an internal point of view, creating a system that uses external APIs to aggregate content 
has opened the door to how we might integrate internal services by exposing APIs and allowing 
them to communicate more fluidly. In addition, it has also helped us think about the use of 
external sources and how we could use them for the benefit of the University from a learning 
and marketing perspective. 

It is hard to say if there are any things we would do differently. Our programmer has said that he 
maybe needed more experimentation with the Zend Framework before taking on something this 
big, but still advocates the use of the framework. 

The main advice we would give to other developers is if developing in house use an established 
framework. This is a happy medium between using an off-the-shelf system that may not work 
how you want and that you may not be able to change, and writing something completely from 
scratch. 



 

JISC GOOD APIS REPORT 21 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

There is a multitude of open, external APIs out there – if using for a ‘mashup’ experiment with a 
few but also get your target audience to feedback on what they think would be useful 
beforehand. This is also the case for integration and aggregation across internal systems. 

Contact details 

Tony Hudson, University of Sussex, t.hudson@sussex.ac.uk, 
<http://www.sussex.ac.uk/splash/>  

13.2 The Open Source Debate: A Good API is not Enough 

We often argue about whether we can trust service X or whether we can hold our data in 
service Y. This usually boils down to whether the provider of the service is likely to survive, 
whether the data is secure and whether we can access it in an open format via a documented 
API. We usually fail to consider the influence we will have on the providers of the service or 
software exposed by the API, we therefore fail to consider our own futures. 

I’m going to limit myself to thinking about Web based APIs (which we should not do, but since 
the UK HE and FE communities tend to think API means access to a Web service I’ll do the 
same here). In this situation we need to consider access to the source code that implements the 
API. This should be an important part of our decision making process for many reasons, the 
most important of which is that it increases the options available. 

As an example we can consider microblogging, an area that is getting a fair amount of attention 
in the education sector. 

Twitter, probably the most popular of microblogging platforms, is Web based and provides a 
clearly documented and reasonably complete API. Institutions and researchers are currently 
considering solutions based on microblogging systems like Twitter. The focus of such efforts 
include questions like “will Twitter be here in 5 years?”, “what is their profit model?”, “will they 
start charging soon?”. These are important questions because the institution will have no control 
over their own systems if they depend on an external service like Twitter. 

For small organisations with no IT support, the use of Twitter is attractive. It is low cost, feature 
rich and popular. Should the model of use within Twitter change a small organisation can adapt 
quickly. However, for larger organisations like Universities and Colleges something like Twitter 
can embed itself, almost unseen, into many different systems across the organisation. For 
example, it could be integrated into institution wide news networks, the student VLE and and 
researchers VRE, the student tracking systems and the lecturer feedback mechanisms (to name 
just a few of the ideas I’ve heard). Clearly an institution can quickly become dependent on a 
microblogging service and thus the longevity of Twitters support, at current pricing levels, is very 
important to medium and long term planning.  Unfortunately, there is no way of knowing where 
Twitter is currently heading and so planning becomes very difficult. 

Some commentators argue that depending on any third party solution is too risky and inflexible. 
Others argue that third party solutions can provide significant cost savings with only a limited 
sacrific of flexibility. What we really want is a middle ground. A solution in which we can take 
advantage of third party solutions for as long as the opportunity cost of doing so falls below the 
cost of developing our own, independent, solutions. Fortunately, there is such a “third way”, that 
third way is open source software. 

Continuing our example of a microblogging service, an alternative to Twitter is identi.caxlvi. Like 
Twitter, Identi.ca provides an API for accessing the system and so it can be integrated with in-
house systems. It provides all of the features of Twitter and content can be bridged between the 
two (via the respective APIs). There is, at least on the surface, no significant difference between 
the two systems. 

However, the Identi.ca platform is built using Laconica an open source microblogging tool. This 
means that if the hosted identi.ca service becomes unsuitable for any reason one can “simply” 
install Laconica on a suitable server and continue as before. Of course, it really isn’t that simple, 
by moving away from the Identi.ca server you are taking on the responsibility of maintaining 
your own server. You may also be forcing your users to rebuild their social networks on yet 
another system, which presents a barrier to use. Fortunately, there is a middle ground in this 



 

JISC GOOD APIS REPORT 22 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

case too. Since Laconica is open source, any third party could set up a company providing 
Identi.ca like services, including, for example, a group of collaborating universities. 

It is tempting to say that an API is good if it provides the functionality we need and the ability to 
export our data if we decide to move on. However, as we have seen, this is not always enough, 
not when we need to plan strategically. Web based APIs are, in some cases, merely a way to 
provide the flexibility to customise systems whilst still locking you into a single provider solution. 
Experience has shown us that a monopoly in any domain is a dangerous thing. 

We must be able to avoid lock-in to any individual provider’s services. Simply being able to 
export data from our current service provider is not sufficient. We also need to be able to find an 
alternative provider. Whilst open source does not guarantee the existence of an alternative it 
certainly increases the chances of one being created where demand exists. This in turn puts 
additional pressure on other providers to satisfy the needs of their existing customer base. This 
pressure often manifests itself through the provision of a more complete and flexible API. This 
can be seen in the example of the Identi.ca API which not only implements the full Twitter API 
but goes much further. 

Contact Details 

Ross Gardler, JISC OSS (Open Source Software) Watch, University of Oxford 
ross.gardler@oucs.ox.ac.uk 

OSS Watch <http://www.oss-watch.ac.uk/> 

14 Appendix A: Good APIs survey Questions  

About You 

The aim of this survey is to identify best practice which should be adopted when making use of 
APIs (Application Programming Interfaces). The feedback will inform a report for JISC on best 
practices related to the development of and use of APIs in JISC's development activities and will 
be made freely available.  

It should take you about 5 to 10 minutes to complete. 

1. What type of organisation do you work for? 

HE/FE 

Research 

Commercial 

Government 

Other 

Other (please specify)  

2. Are you a: 

Developer 

Team Leader 

Project Manager 

Other 

Other (please specify)  



 

JISC GOOD APIS REPORT 23 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

3. What's your email address?  

Provision of APIs 

1. Do you provide APIs for development work? 

Yes 

No 

If yes give details 

2. What do you feel are the potential benefits of providing APIs?  

3. What do you feel are the limitations of providing APIs?  

4. What examples of good practice (with regard to providing APIs) would you recommend to 
others?  

Consuming APIs 

This set of questions is intended for people who use APIs provided by any of the following: 
Third party services (e.g. Delicious, Twitter etc.) JISC-funded or institutional services (e.g. 
SHERPA/RoMEO) Other institutional systems (e.g. VLE, staff student databases) 

1. Do you consume external APIs? 

Yes 

No 

If yes give details 

2. List any problems you have encountered when doing so?  

3. What examples of good practice (with regard to consuming APIs) would you recommend to 
others?  

General Advice 

1. Give any top tips you have for providing/consuming APIs 

2. Do you have any recommendations for JISC with regard to HE use of APIs?  

3. Is there any information you feel you would benefit from? 

Briefing papers on technical areas (APIs, Java etc.) 

Guides to best practice 

Top tips 

Report on current practice in UK HE 

Case studies 

Set of criteria to use when selecting APIs to use 

Lists of APIs of use to HE 

Other (give scope, level of detail, length of material etc.)  

4. What topics would you like to see covered in a report for JISC?  

5. Would you be interested in contributing a case study for project documentation? 



 

JISC GOOD APIS REPORT 24 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

Yes 

No 

Maybe 

Please provide contact details (if you haven't already)  

Thank you for filling in this survey.  

If you would like to contact me to discuss the subject of APIs in HE further please e-mail using 
m.guy@ukoln.ac.uk 

15 Appendix B: Statistics from the Good APIs survey 

240 people answered the survey, 6 in the test run and 234 in the final run. 

What type of organisation do you work for? 

HE/FE   63.2% 

Research   10.7% 

Commercial  12.0% 

Government  4.7% 

Other   9.4% 

 

Are you a: 

Developer  36.3% 

Team Leader  15.4% 

Project Manager  17.5% 

Other   30.8% 

 

Is there any information you feel you would benefit from?  

Briefing papers on technical areas (APIs, Java etc.)  43.2% 

Guides to best practice      75.0%33 

Top tips        61.4%27 

Report on current practice in UK HE    61.4%27 

Case studies       65.9%29 

Set of criteria to use when selecting APIs to use  54.5%24 

Lists of APIs of use to HE     81.8%36 

 

16 Appendix C: People Consulted during the Study 

UKOLN Systems Team 

Pete Johnston 

Ian Ibbotson 



 

JISC GOOD APIS REPORT 25 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

Wilbert Kraan 

Tony Hirst 

Sam Easterby-Smith 

Phil Wilson 

Dave Flanders 

And many others… 

17 Appendix D: Potential Topics for future JISC reports 

When asked what documentation or potential reports JISC could support in the area of APIs 
developers offered many ideas. 

These include 

17.1 Case Studies 

There were mixed feeling about case studies – some people find them really useful while others don’t. 

 Lessons learned re the provision or use of APIs, especially any with experience over a 
period of time. 

17.2 Lists 

 Of the popular APIs in use in HE (registry service?) 

 Of APIs of use to HE and why they are of use.  

 Of existing services and APIs relevant for people undertaking project development work in 
a particular context (e.g. VLE or VRE). 

 Of APIs provided by JISC services. 

 Of examples where API's have changed. 

 Of success mash-ups and real-world case studies. 

 Of useful tools (e.g. Yahoo Pipes, Google Spreadsheets, etc.) Give a feature list. 
Contextualised for e-learning., library, etc.  

17.3 Guides 

 Examples of best practice. 

 Define the criteria to use when selecting instances of the effective use of third party 
machine interfaces by the HE community. 

 To technical areas with as little jargon and small a use of abbreviations as possible. Lots of 
diagrams. 

 Technologies - what they are and what each is best suited for. 

 Definitions of technical terms including API. 

 How to design in a way that encourages users to use software. 

 Methods of improving the accessibility and reliability of APIs. 

 Methods of designing APIs and the underlying services which increase resilience, efficiency 
and flexibility. 

 Sustainability/exit strategy issues. 

 Frameworks, technologies, legal implications, document templates, open source 
approaches, development methodologies. 



 

JISC GOOD APIS REPORT 26 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

17.4 Surveys 

 Surveys of use of languages for API programming. 

 Extensive survey of existing assessment systems and their APIs (if any).  

 A survey of the main types of feature normally provided in APIs. 

17.5 Statistical Data 

 How much re-use of JISC research project output is actually achieved? 

 How much of that is use of components via their APIs? 

 How amenable are these JISC-funded components to such use? 

 Amazon type ratings and access numbers available when API is accessed. 

17.6 Standards Information 

 Adherence to standards. 

 Accessibility of APIs. 

17.7 Discussion 

 Some discussion of how API providers engage with API users and determine what these 
APIs should provide, gauge likely demand, etc. 

17.8 Toolkits 

 Establish a set of criteria to assist in the evaluation of APIs, such as currency, resourcing, 
community size, support structures, release management, etc. 

17.9 The Bigger Picture 

 Non-technical view of future developments and where there may be a consensus view for 
UK HE/FE. 

 What commercial software vendors development plans are and how we can all influence 
the strategy and direction. 

Some of this data might be useful in the form of a regular accessible bulletin/blog.  

18 Appendix E: Definitions 

RSS 

RSS or Really Simple Syndication is a set of standardized formats that are used in publishing 
frequently updated works for example; blog entries, news headlines, audio and video feeds. The 
RSS format is written in XML and is called a “feed”, users are able to “subscribe” to RSS feeds 
using what is know as a feed reader. RSS feeds can contain; full or summarised text and/or 
metadata for example author, publication date, title, URL link. 

ATOM 

Atom is a pair of related standards, the Atom Syndication Format and the Atom Publishing 
Protocol (AtomPub). The Atom Syndication Format is an XML based web feed format like RSS, 
users are able to subscribe to Atom feeds in the same way as RSS. Atom has a richer set of 
features for programmers to take advantage of than RSS. AtomPub is as the name suggests a 
protocol for creating and updating web resources, such as blogs. 

OAI 

The Open Archives Initiative’s goal is to develop and promote interoperability frameworks for 



 

JISC GOOD APIS REPORT 27 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

institutional repositories and digital archives. They currently have two frameworks, OAI-PMH 
and OAI-ORE 

OAI-PMH 

Open Archives Initiative Protocol for Metadata Harvesting is a protocol used to harvest 
metadata descriptions of records from institutional repositories and digital archives. The protocol 
uses XML over HTTP to achieve this. 

OAI-ORE 

Open Archives Initiative Object Reuse and Exchange is a standard used for the description and 
exchange of aggregations of Web resources. It achieves this by using Resource Maps (ReMs) 
these can be represented in several different formats including; Atom feeds, RDF/XML and 
RDFa. 

Open API 

Open API (or OpenAPI) mean an open application programming interfaces (a set of protocols or 
libraries) that people can use to write their own program to present or interact with data or 
services provided by the website/web service that has an Open API. 

REST 

Representational state transfer is a style of software architecture which has the notion of a 
resources and identifiers. Any information that can be named such as: a document, image, a 
virtual object, etc is a resource and is referenced with a global identifier such as a URI. The 
World Wide Web is a key example of a RESTful design. 

RESTful API 

For an API to be considered RESTful it needs to for fill the following actions; Create, Read, 
Update and Delete. These terms are also know as CRUD. The term “accidentally RESTful” is 
applied to APIs that only for fill part of the CRUD actions. 

HTTP 

Hypertext Transfer Protocol is a transfer protocol for distributed resources. It is based on a 
request/response standard whereby a client requests data from a server. Such as when a user 
“requests” web site from a web server the server responds by “sending” back the requested 
web page. 

API Libraries 

An application programming interface is a set of protocols or libraries that can be both 
Language-dependent and Language-independent provided by software, web services, and 
operating systems. To support developers in creating both desktop and Web applications. 

JSON 

JavaScript Object Notation, is a text-based, human-readable format for representing simple 
data structures. The JSON format is mainly used in AJAX programming as an alternative to 
using the XML format. 

XML-RPC 

XML Remote Procedure Call is a lightweight protocol which uses XML to encode its calls to an 
application across a network or the internet to fetch back information. 

19 Author Contact Details 

Marieke Guy 

Research Officer 

UKOLN, University of Bath, BA2 7AY 

Web site: http://www.ukoln.ac.uk/ 



 

JISC GOOD APIS REPORT 28 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

Email: M.Guy@ukoln.ac.uk 

Phone: 01225 703928 

20 References 

URLs appearing in this report were last accessed on Friday 6th March 2009.  

                                                      

i Creative Commons Attribution-Non-Commercial 2.0 UK: England & Wales 
http://creativecommons.org/licenses/by-nc/2.0/uk/ 
ii Wikipedia – APIs 
 http://en.wikipedia.org/wiki/API 
iii Delicious bookmarks 
http://delicious.com/mariekeguy/good-apis-jisc 
iv http://www.surveymonkey.com/ 
v http://www.surveymonkey.com/s.aspx?sm=yGugtLrayEiRLnGYzlUQ4w_3d_3d 
vi CETIS Conference Wiki 
http://wiki.cetis.ac.uk/Conference_2008_Programme 
vii Wiki used at CETIS conference for Innovation in a World on Web APIs 
http://cetis2008-apis.wetpaint.com/?t=anon&t=anon 

viii Technological Innovation in a World of Web APIs 
http://www.ukoln.ac.uk/web-focus/events/conferences/cetis-2008/ 

ix Dev8D Web site 
http://www.dev8d.org/ 
x Dev8d blog: Five minute Interview; Paul Walk  
http://dev8d.jiscinvolve.org/2009/02/10/five-minute-interview-paul-walk/ 

xi Dev8d blog 
http://dev8d.jiscinvolve.org/ 

xii Dev8d Twitter channel  
http://twitter.com/dev8D 

xiii Good APIs blog: 
http://blogs.ukoln.ac.uk/good-apis-jisc/ 

xiv Writetoreply.org 
http://writetoreply.org/ 

xv Yahoo Pipes 
http://pipes.yahoo.com/pipes/ 

xvi OpenDOAR API 
http://www.opendoar.org/tools/api.html     

xvii OpenDOAR Prototype Protocol for Statistical Harvesting 
Description at http://www.opendoar.org/demos/psh_prototype.php 

xviii SHERPA/RoMEO Prototype API 
http://www.sherpa.ac.uk/romeo/api.html 

xix WWWOPAC 
http://downloads.adlibsoft.com/uk/documentation/WWWOPAC%20reference%20guide_A5.doc 

xxMuseum of London 
http://www.museumoflondon.org.uk/MuseumOfLondon/food/rest.aspx 



 

JISC GOOD APIS REPORT 29 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

                                                                                                                                                            

xxi arXiv 
http://arxiv.org/api 

xxii Oxford University Research Archive (ORA) 
http://ora.ouls.ox.ac.uk 

xxiii GeoCrossWalk 
http://www.geoxwalk.ac.uk/ 

xxiv Celtic coin index for Oxford University 
http://www.finds.org.uk/cci/blog 

xxv PROD 
http://prod.cetis.ac.uk/ 

xxvi JISC funded WebPA 
http://webpaproject.lboro.ac.uk/ 

xxvii Promethean Planet 
http://www.prometheanplanet.com/pdn 

xxviii Group Manager API, Bath University 
http://wiki.bath.ac.uk/display/bucswebdev/LDAP+Group+Management+API 

xxix Deposit API  
http://www.ukoln.ac.uk/repositories/digirep/index/Deposit_API 

xxx Splash 
http://splash.sussex.ac.uk 

xxxiJoe Cutting 
http://www.joecutting.com/newsquiz.asp 

xxxii Programmable Web 
http://www.programmableweb.com/ 

xxxiii Webmashup, 
http://www.webmashup.com/Mashup_APIs/index.php 

xxxiv WebAPI Directory, 
http://www.webapi.org/webapi-directory/ 

xxxv Library Application Program Interfaces (APIs), TechEssense.info, Roy Tenant, 17 July 
2008 
http://techessence.info/apis/ 

xxxvi Mashed Library blog 
http://mashedlibrary.ning.com/forum/topic/show?id=2186716%3ATopic%3A9 

xxxvii Museums and Computers Group  
MCG@JISCMAIL.AC.UK 

xxxviiiBrooklyn Museum blog: 
http://www.brooklynmuseum.org/community/blogosphere/bloggers/2009/03/04/brooklyn-
museum-collection-api/ 

xxxix http://www.dataportability.org/ 

xl Hibernate 
 http://www.hibernate.org/ 

xli GregorianCalendar 
http://java.sun.com/j2se/1.5.0/docs/api/java/util/GregorianCalendar.html 



 

JISC GOOD APIS REPORT 30 GOOD_API__JISC_REPORT_20090422.DOC    APRIL 2009 

                                                                                                                                                            

xlii How to Design a Good API and why it matters 
http://www.slideshare.net/guestbe92f4/how-to-design-a-good-a-p-i-and-why-it-matters-g-o-o-g-l-
e/ 

xliii What I’d like from JISC APIs 
http://www.slideshare.net/psychemedia/cetis-conf-what-id-like-from-jisc-apis-presentation 

xliv Zend 
http://framework.zend.com/ 

xlv SPLASH 
http:://www.sussex.ac.uk/splash 

xlvi identi.ca 
http://identi.ca/ 


